

Methods and techniques for the design of educational computer simulation programs
their validation by means of empirical research

P.G. van Schaick Zillesen

PhD Thesis, Twente University, Enschede, The Netherlands, December 20,1990

Promotor
Assistant Promotor

Prof. dr. E. Warries
Dr. Ir. F.B.M. Min

ISBN 90-9003874-4

First print (on paper)
Printed by

1990
Krips Repro, Meppel

Second print (e-book)
Website

2009
http://www.zillesen.nl

It is not allowed to multiply or publish this publication, or parts of it, without written
permission of the author

http://www.zillesen.nl

CHAPTER 1. INTRODUCTION 1

CHAPTER 2. SPECIFICATIONS AND METHODS FOR THE DESIGN
AND EVALUATION OF EDUCATIONAL COMPUTER
SIMULATION PROGRAMS 11

2.1. INTRODUCTION 11
2.2. SPECIFICATIONS FOR THE DESIGN OF EDUCATIONAL

COMPUTER SIMULATION PROGRAMS 11
2.2.1. Learning method 11
2.2.2. The visualization of the simulated system 16
2.2.3. Output of the results of the simulation 17
2.2.4. Control structure of the program 18
2.2.5. Interactions between student and model 19

2.3. A METHOD FOR THE SYSTEMATIC DESIGN OF EDUCATIONAL
COMPUTER SIMULATION PROGRAMS 20

2.3.1. Overview of the design method 21
2.3.2. MacTHESIS 25
2.3.3. THESIS 30
2.3.4. MacTHESIS (HyperCard versions) 35

2.4. Criteria and methods for the evaluation and
description of educational computer
simulation programs 40

CHAPTER 3. DESCRIPTION OF PROTOTYPES OF EDUCATIONAL COMPUTER
SIMULATION PROGRAMS AND EVALUATION OF THE DESIGN
METHOD 43

3.1. INTRODUCTION 43
3.2. PROTOTYPES DESIGNED FOR THE SUBJECT OF BIOLOGY 45

3.2.1. AXON 49
3.2.2. BIOLOGY 51
3.2.3. CELLS 54
3.2.4. FOOD CHAIN 59
3.2.5. LEMMING 67
3.2.6. PERCH 72

3.3. PROTOTYPES DESIGNED FOR THE SUBJECTS OF CHEMISTRY
AND PHYSICS 77

3.3.1. CHEMISTRY 80
3.3.2. BOILER 83
3.3.3. TRANSISTOR 86

3.4. PROTOTYPES DESIGNED FOR THE SUBJECT OF MEDICINE 88
3.4.1. AORTA 89

3.5. PROTOTYPES DESIGNED FOR THE SUBJECT OF ECONOMICS 93
3.5.1 ECONOMY 95

3.6. PROTOTYPES DESIGNED FOR THE SUBJECT OF INFORMATICS 96
3.6.1. CASCADE 99

3.7. PROTOTYPES DESIGNED FOR THE SUBJECT OF TECHNOLOGY 101
3.7.1. BRINE PURIFICATION 101

3.8. DISCUSSION AND CONCLUSIONS 106
3.8.1. Domain independence 106
3.8.2. Student population independence 109
3.8.3. Performance 110
3.8.4. Effectiveness 113

CHAPTER 4. RESULTS OF FIELD TESTING: SEPARATING FUNCTIONS
OF THE MONITOR 114

4.1. INTRODUCTION 114
4.2. FIELD-TEST 1: COMPARISON OF THREE VERSIONS

OF THE PROTOTYPE AORTA 117
4.2.1. Method 118
4.2.2. Results 120

4.3. FIELD-TEST 2: COMPARISON OF TWO VERSIONS
OF THE PROTOTYPE FOOD CHAIN 132

4.3.1. Method 133
4.3.2. Results 134

4.4. DISCUSSION & CONCLUSIONS 140

CHAPTER 5. RESULTS OF FIELD TESTING: INTEGRATION OF
SIMULATION PROGRAMS AND OTHER TYPES OF
COMPUTER AIDED LEARNING 141

5.1. INTRODUCTION 141
5.2. EVALUATION OF CELLS - version MacTHESIS (HyperCard) 144

5.2.1. Method 144
5.2.2. Results 146

5.3. EVALUATION OF BRINE PURIFICATION 157
5.3.1. Method 157
5.3.2. Results 158

5.4. DISCUSSION & CONCLUSIONS 162

CHAPTER 6. RESULTS OF FIELD TESTING: THE USE OF COMPUTER
SIMULATION PROGRAMS BY DIFFERENT POPULATIONS 164

6.1 Introduction 164
6.2 Evaluation of FOOD CHAIN in lower secondary education 165

6.2.1 Method 165
6.2.2 Results 167

6.3 Evaluation of FOOD CHAIN in higher secondary education 172
6.3.1 Method 172
6.3.2 Results 174

6.4 Evaluation of FOOD CHAIN during a university course 176
6.4.1 Method 176
6.4.2 Results 179

6.5 Discussion and Conclusions 182
6.5.1 Information presentation techniques 182
6.5.2 Context 185

6.5.3 Control structure 186

CHAPTER 7. SUMMARY 187

CHAPTER 8. SAMENVATTING (Dutch Summary) 190

REFERENCES 193

NAWOORD 199

CHAPTER 1. INTRODUCTION

The major purpose of an educational computer simulation program is to provide
students with a representation of a part of reality. The students are able to
manipulate this representation, e.g. by changing the properties of the representation
or by changing the conditions under which the representation operates. The
behaviour of the representation as a result of these changes is similar to that of the
represented part of the reality. Students learn about the real system by transferring
knowledge gained through studying and manipulating the representation of the
simulated system which behaves in a way analogous to the real system.

A part of reality, selected for the purpose of studying it, is generally called a system.
The part of reality represented by means of an educational computer simulation
program is called the simulated system. Many authors (e.g. Wedekind, 1985)
distinguish three categories of systems:

natural systems (sometimes called physical systems). This category implies all
existing systems except for the systems created by man. Natural systems may
originate from a wide range of fields like astronomy (e.g. the solar system),
geology (e.g. erosion on a mountain slope), biology (the growth of plants)
and physiology (e.g. the generation of action potentials in a nerve fibre)
artificial systems. Artificial systems are existing man-made systems. Examples
of artificial systems are instruments (e.g. the instruments used for a titration
experiment), vehicles (e.g. an airplane), machines (e.g. a PLC), industrial
plants (e.g. an ethanol plant), social systems (e.g. a queue in a supermarket)
and economical systems (e.g. the national economy),
imaginary systems (sometimes called hypothetical or abstract systems).
Imaginary systems do not exist in reality but in the imagination of man.
Although they do not have a counterpart in reality, imaginary systems can be
represented in many forms like drafts, scale models and mathematical
formula. Sometimes these representations can be used to construct an
artificial system (e.g. constructing a building using drafts), in other cases this
is not possible (e.g. in the case of formula describing a world without gravity).
Most video-games can be seen as representations of imaginary systems. In
education representations of imaginary systems may be very useful in order to
illustrate simplified theories (like exponential population growth or the
movement of objects in a world without friction).

Many authors (e.g. Doerr (1979), Dekkers and Donatti (1981), Moore and Thomas
(1983) and Hebenstreit (1988)), give reasons for studying a computer simulation of a

l

system instead of studying the system itself like:
Scale. Some systems are too large or too small to be studied in reality; others
may react too fast or too slow. In a computer simulation a more convenient
scale can be selected.
Safety. Some experiments are to dangerous to be executed in the classroom.
This objection does not apply to simulations of these experiments.
Required apparatus. Computer simulations may replace real experiments in
an advantageous way in case the necessary equipment for the execution of an
experiment is very expensive or in case the equipment can only be controlled
by trained persons.
Costs. In many cases costs of education (in terms of physical space required,
materials consumed, and time of students, teachers and technical assistants)
may be reduced when practical work is replaced by computer simulation.
Visualization. In many cases abstract concepts can be visualized by means of
computer simulation. It will be easier for the student to construct a mental
model of these abstract concepts when they are represented as sets of objects
which can be manipulated.
Didactics. On the one hand a representation of a system presented by a
simulation program is more abstract than the system itself. On the other hand
it is more concrete than the students' mental model of the system. This
intermediate layer between the concrete and the abstract may help the
student to bridge the gap between reality and the mental model.
Ethics. Experiments which are not allowed for ethical reasons can be
simulated.

For the construction of a computer simulation program a structured description of
the simulated system is required. A description of a system is generally called a
model.

The first models used in science were models of the solar system, which were
designed in about 1700 A.D. According to Jeffers (1982) these models, known as
empirical models, were used for the acquirement of knowledge. Scientists believed
that the knowledge required to build a valid empirical model of a system was
sufficient to understand how the system worked. The models constructed by these
scientists were reduced-sized copies of the simulated systems. Later on, however, as
the development of mathematical methods progressed, the research method of
building empirical models, based purely on trial and error processes, was gradually
replaced by the method of mathematical modelling, based on scientific analyses and
prediction. The concept "model" was transferred from physical representations to
mathematical formulae or rules expressing the relationships between the entities of
the system.

2

Apart from empirical and mathematical models a third category of models can be
distinguished: the conceptual or mental models. A conceptual model is the
representation of the studied system in the mind of the student. Kornbluth and Little
(1976) state that conceptual models are based on knowledge, experience and
intuition.

Modelling in the sense of a technique for solving scientific problems, benefited
enormously from the development of electronic computers during the past 40 years.
Both directly, due to the gigantic number of calculations which can be made by a
computer within a limited time, and indirectly, because of the stimulation of
mathematic techniques and methods of system analyses.

However, not all models can be processed by means of electronic computers. The
model has to consist of formal concepts and descriptions of the relations between
these concepts in order to allow computer processing. Models conforming to these
conditions are called formal models. A formal model consists of two parts:

a description of the state of the system
a description of possible transitions of the state of the system in the form of
rules or equations. This description depends on external factors (also known
as external parameters or driving variables) operating from outside the
system.

Two types of formal models exist: qualitative and quantitative models. Between the
states of qualitative model conditional relations exist (in case of a logical model or
expert system) or relations based on probabilities.

In case of a quantitative model, the state of the model is described in the form of a
set of variables (often called the state variables) and the relations between them (in
the form of mathematical equations). Each variable may have a number (or a range)
of values. Two types of variables exist:

dependent variables. The value of these variables depends on other variables
independent variables. The values of these variables are not influenced by the
values of other variables

Apart from variables a second type of entities with a numerical value may be present
in a quantitative model. These entities are called parameters. The parameters
represent the properties of the system (e.g. the volume of a tank). In contrast to the
values of independent variables, the values of parameters are fixed. Furthermore,
they do not depend on the values of other model entities. However, the values of
dependent variables may depend on the values of parameters.

3

Two types of quantitative models exist: deterministic models and stochastic models.
In deterministic models the model equations are based on causal relationships. In
stochastic models at least some of the model equations are based on random
processes (e.g. a model of the length of a queue in a supermarket where new
customers enter at unpredictable moments). For this reason, it is not always easy to
predict the results of a simulation based on a stochastic model. Furthermore, when
the simulation is repeated under identical conditions, the results of the second
simulation may differ from the results of the first. Because of these features,
stochastic models are generally less suitable for educational purposes than
deterministic models. However, in case the simulation is designed in order to enable
the students to study the influence of statistical processes (e.g. in the case of research
data generating models meant for the training of scientists or models of phenomena
based on statistical processes like population genetics and evolution), stochastic
models may be useful.

A deterministic model may give a static representation of a system, depending on the
values of the parameters and variables. This type of deterministic models is called
static deterministic model. Static models are often constructed as a preparation for
the construction of artificial systems (e.g. buildings). This type of static deterministic
model is also known as geometric model. Sometimes natural systems based on
dynamic actions can be adequately described by a static model as well (e.g. chemical
equilibria).

Another group of deterministic models are called dynamic models. The values of at
least some of the entities of a dynamic model change as a function of time. Dynamic
models are used to predict the behaviour of the system in consequence of
interventions (applications for management), or to test if the theories constructed
about the system conform to reality (applications in scientific research). Dynamic
models are known in almost all fields, e.g. biology (models of ecosystems or models
of physiological experiments), chemistry (models of chemical reactions), economy
(models of micro- and macro-economical systems), medicine (models of patients) or
physics (mechanical models).

Two types of dynamic models exist. In the first type, known as the continuous
dynamic model, the function between the model entities and time is described by
means of differential equations. On a digital computer, the course of the values of
the variables can be approached by means of an iteration process (e.g. according to
the algorithms of Euler or Runge-Kutta).

In the second type, known as the discrete dynamic model, the state of the model is

4

stable until a so called event occurs. Events may be generated at regular intervals
(e.g. economical models in which events are generated once a year, once every three
months or once a month) or at irregular intervals (e.g. a simulation of a queue).

Compared with discrete dynamic models, continuous dynamic models are generally
better suited to educational purposes. During a simulation based on a continuous
model, the student can experiment (by interrupting the calculation process and
changing the values of the model entities) any time he wants. After the completion of
the student's intervention, the calculation process can proceed based on the new
state. Discrete dynamic models do not allow this type of free experimenting. After
the generation of an event a new model state is calculated in a single shot. This
algorithm implies that there are no intermediate values for the entities of the model
in the interval between two events. Experimenting is restricted to the moment of time
immediately after the occurrence of an event.

Many authors, e.g. Hinton(1981), Daldrup (1987) and Gorny (1988), distinguish two
purposes of education to which dynamic models can be applied: dynamic modelling
and dynamic simulation.

When models are applied for dynamic modelling the student constructs, selects or
adapts the mathematical model. The idea behind this is that there is a constant
interaction between the mental model that the student has and the model that he
constructs during the modelling process. By adapting the constructed model, the
mental model is adapted at the same time. In doing so the student gets an
understanding of the complex interrelationships between the entities of the system.
Whitfield (1988) describes STELLA, an advanced system for dynamic modelling.
STELLA and other similar systems, provides students with tools enabling them to
construct models in an interactive way, with a minimal knowledge of mathematics
and computing. The STELLA system has been tested in courses for undergraduate
students as well as in secondary education. The system has proved to be an effective
tool for university students; however, only with great care can it be used during the
later years of secondary education (Whitfield, Personal Communication). Dynamic
modelling systems are beyond the scope of this thesis.

When models are applied for dynamic simulation the student works with an existing
mathematical model. In that case, the student is not able to adapt the model. The
interactions between the student and the model are restricted to changing the values
of the model entities and studying the output. In most cases models of natural or
artificial systems are used for education, although some authors (e.g. Wedekind
(1985) and Gorny (1988)) also mention the use of models of imaginary systems for
this purpose. The computer program enables the student to study a representation of

the system, without knowing the mathematical model on which the program is based.
The objective of a dynamic simulation is the manipulation of a dynamic model of a
system (e.g. a fish pond, the national economy, the human body or a chemical plant)
in order to reproduce the operation of the system as it moves through time.

The importance of dynamic simulation, enabling students to acquire knowledge in an
active, individualized way by means of exploring, has been stressed by many authors
(e.g. Kolb and Goldman (1973), Bork(1981), Romiszowski (1981), Wedekind (1985)
and Min(1989)). In contrast to many other types of CAL (e.g. tutorials and drill- and
practice programs), simulations are not meant to be used as a substitute for a
teacher, but as a tool which can be applied by the teacher for the purpose of
facilitating the learning of principles. In many cases the use of a simulation program
is superior to any other teaching method which can be applied for this purpose.

For this reason, many applications of educational computer simulation programs have
been realized in recent years. However, almost all of these programs have been
developed in a dedicated way, since software tools required for the systematic design
and development of simulation programs are scarce.

During the design process of educational computer simulation programs a number of
decisions have to be taken which are characteristic for the user interface of this type
of educational software, such as:

the way the simulated system is represented
the way the results of the simulation are shown
the way the simulation program is controlled
the way the presentation of the simulated system, the output of the results of
the simulation and the control structure are separated from each other
the way the students are instructed during the simulation

Educational computer simulation programs are applied in a wide range of types of
education (vocational training, secondary education, operator training, university
courses etc.). Criteria for taking the decisions mentioned above may differ from one
type of education to another, depending on the level of the students and the
educational goals. There are no criteria available to take these decisions, which are
based on empirical research. Furthermore, in contrast to tutorial CAL, refined design
systems for simulations are lacking (stressed by Wedekind, 1988), although a first step
in this direction has been taken by Min (1982), who described the RLCS-system, a
design system for simulations implemented on VAX - and MINC minicomputers. The
RLCS-system has not been used on a large scale. The most likely reason for the
indifference of software developers towards the RLCS system is the limited
availability of minicomputer facilities on schools, due to the high price of the

6

required hardware. Furthermore the development of new techniques in the fields of
software and hardware, which took place soon after the introduction of the RLCS
system, enabled the development of more advanced simulation software, better suited
for implementation in everyday education due to the use of relatively cheap
hardware. The most important features of these new techniques and hardware
facilities were:

an improved user-interface (due to the use of window-techniques and event
driven software).
an improved response time (due to the use of fast processing
microcomputers). This feature enabled the use of larger mathematical
models.
the presentation of high quality graphical displays (due to the use of high
resolution graphical screens)
the design of graphical displays by means of interactive graphical editors
direct manipulation of objects on the screen (due to the use of pointing
devices)

The RLCS system did not support the use of these features. Until now simulation
programs have been designed on a purely ad-hoc (or purely theoretical) basis due to
the lack of an adequate design system.

In this thesis a general design method for the systematic design of educational
computer simulation programs is introduced and tested. Furthermore, the results are
presented of field-tests of prototypes designed according to the method. The results
of the field-tests may facilitate future decisions in respect to three aspects of the
design of educational computer simulation programs:

selecting the instrumentation technique for separating the functions of the
computer monitor during the use of a simulation program (presenting a
visualization of the simulated system, the control structure and the output of
the simulation).
selecting the instrumentation technique for the guidance of the student during
the use of a simulation program.
selecting the instrumentation techniques in respect to information
presentation, context and control structure depending on the population of
students for which the program has been designed.

In the second chapter of this thesis, the design method is introduced. At the start of
the chapter specifications are given for programs designed according to the method.
Attention is focused on five aspects: learning method, visualization of the simulated
system, output of the results of the simulation, control structure and interactions
between student and model. After this, the design method is described. Three

implementations of the method (MacTHESIS, THESIS and MacTHESIS -
HyperCard version) used for generating prototypes explained in this thesis are
described in detail.

The system MacTHESIS is used for the design of advanced prototypes of educational
computer simulation programs. Programs designed with MacTHESIS can be used on
a Macintosh computer, applying multi-windowing techniques and controlled by means
of a mouse.

However, most of the secondary schools in the Netherlands do not possess Macintosh
computers, but IBM-compatible computers provided by the so-called NIVO-project
(New Information Technologies in Secondary Education).

The system THESIS is constructed for the design of educational computer simulation
programs that work on computers provided by the NIVO-project. With THESIS,
prototypes can be developed which can be field-tested under conditions of everyday
education. However, compared with programs designed with MacTHESIS, the
user-interface of programs designed with THESIS is poor due to the specifications of
the computers of the NIVO-project. The main limitations are:

An additional input device is not supported
Due to the low graphical resolution the representation of the system and the
output of the results of the simulation can not be shown simultaneously on
the same screen in a convenient way.
Large mathematical models can not be used for the design of programs with
THESIS owing to the low processing speed.

The HyperCard version of MacTHESIS has been designed in order to enable the
integration of simulation programs with other CAL-materials made with HyperCard.
With this version, simulation programs can be designed with a user-interface similar
to that of the CAL-materials.

In the last part of the second chapter, those aspects are presented on which the
field-tests of the generated prototypes have been focused.

In the third chapter, the design method described in the second chapter is evaluated
with regard to criteria in respect of the following topics:

subject independence
student level independence
performance
effectiveness

8

A selection of the prototypes designed according to the design method is described in
chapter 3 in order to provide data to test these hypotheses. Thirteen prototypes (23
versions) are described. Prototypes for the following subjects are described: Biology,
Chemistry, Physics, Medicine, Informatics, Economy and Technology. A great number
of populations of students is covered by the prototypes (vocational training, secondary
education, university, operator training). Data of the performance of the design
method are presented in this chapter, with respect to the types of mathematical
models that can be used and time needed for the design, development and revision
of prototypes. At the end of the chapter the design method based on the criteria
given at the start of the chapter is discussed.

In chapter 4 and 5 results of field tests are compared of prototypes of educational
computer simulation programs that differ in the way design decisions are taken. In
chapter 6 the results are compared of field-tests of the same prototype in several
populations of students. The aim of these chapters is to take a first step in the
direction of the construction of empirical rules for taking decisions with respect to
the design of educational computer simulation programs.

Chapter 4 focuses on the instrumentation techniques for separating the functions of
the computer monitor. In this chapter the results of two field-tests are presented. In
the first test, three versions are tested of the prototype AORTA. In each version, the
presentation of the control structure and the output of the simulation are separated
in a different way. In the second test, two versions are tested of the prototype FOOD
CHAIN. The versions differ in respect of the technique for separating the
presentation of the visualization of the simulated system from the presentation of the
output of the simulation.

Chapter 5 focuses on the instrumentation technique for the guidance of the student
during the use of a simulation program. Two main instrumentation techniques to
guide the student are available:

guiding by means of paper materials (e.g. students' leaflets with information,
instructions and exercises). The learning environment resulting from this
approach is called a paper supported simulation environment
guidance by means of other CAL materials (e.g. tutorials, expert systems or
hypermedia). The learning environment resulting from this approach is called
a CAL supported simulation environment.

Compared with a paper supported simulation environment a CAL supported
simulation environment may show several advantages like:

More adequate instructional feedback can be given to the student based on
the behaviour of the student during the simulation.

9

After an introduction of a simulation case by means of guiding CAL
materials, the state of the simulation program (e.g. the values of the model
entities and the composition of the output) can be adapted according to the
characteristics of the introduced case by means of automatic adaptation.
Realistic images can be generated when interactive-video techniques are
used.
CAL supported simulations environments can, in principle be used on a
stand-alone basis (e.g. for the use in the context of distance education).

However, until recently a CAL supported simulation environment could not be
realized in an efficient and convenient way, since no authoring system allowed the
development of CAL materials with a user interface consistent with that of advanced
educational computer simulation programs.

Recently a new generation of authoring systems (e.g. Course of Action) and
hypermedia systems (e.g. HyperCard) has been introduced. The advanced features
supported by these systems may enable the development of adequate CAL materials
that can be used in a CAL supported simulation environment. In the context of this
study, the first steps towards the development of a CAL supported learning
environment have been taken by means of developing and field-testing two
prototypes (CELLS - HyperCard version and BRINE PURIFICATION; both
prototypes are described in chapter 3) in which CAL materials made with HyperCard
are integrated with simulation programs made with MacTHESIS. The results of the
field-tests of these prototypes are presented in chapter 5. Based on these results,
conclusions have been drawn about the future design of more adequate prototypes.

Chapter 6 focuses on the relation between the design of an educational computer
simulation program and the population of students for which the program has been
designed. Results of field-tests of the same prototype (FOOD CHAIN) in four
populations of students (vocational training, lower secondary education, higher
secondary education, university) are presented. Based on the results of these
field-tests recommendations have been made for the design of educational computer
simulation programs for the populations under investigation. The recommendations
focus on the instrumentation techniques in respect of information presentation,
context and control structure.

10

CHAPTER 2. SPECIFICATIONS AND METHODS FOR
THE DESIGN AND EVALUATION OF EDUCATIONAL
COMPUTER SIMULATION PROGRAMS

2.1. INTRODUCTION

The fast improvement of microcomputer hardware and the development of new
techniques in the field of software ergonomics during recent years enable the design
of advanced educational computer simulation programs. The programs support
features like windowing man-machine interfaces, high resolution graphical screens,
pointing devices enabling direct manipulation of objects on the screen and
presentation of the output of large mathematical models at a convenient speed. In
the first section of the chapter specifications are given for educational programs,
making use of these new features. Demands for a design method enabling the
systematic design of these programs are based on these specifications. Attention is
focused on five aspects: learning method, visualization of the simulated system,
output of the results of the simulation, control structure and interactions between
student and model. A method is described for the systematic design of programs,
conforming to the given specifications. Recent versions of three implementations of
the method (MacTHESIS, THESIS and MacTHESIS - HyperCard version) used for
generating prototypes are described in detail. Prototypes generated by means of these
implementations are described in chapter 3. Results of field-tests of some of these
prototypes are presented in the chapters 4, 5 and 6. In the last section of this chapter
the focal aspects of these field-tests are presented.

2.2. SPECIFICATIONS FOR THE DESIGN OF EDUCATIONAL COMPUTER
SIMULATION PROGRAMS

2.2.1. Learning method

Freibichler (1974) distinguishes a number of learning methods which can be applied
when educational computer simulation programs are used:

Discovery learning. No instructional feedback is given to the student.
Advance organizer. Before the start of the actual simulation a conceptual
model of the contents of the simulation is given to the students.
Basic concept. Before the start of the simulation the students is informed of
the basic contents of the simulation. After the termination of the simulation

1 1

the full conceptual model is given to him in order to enable him to compare
this model with his personal experience.
Hierarchical strategy. During the learning process the student receives
instructional feedback. The feedback is given in a systematic sequence
depending on the proceeding of the learning process.

Min (1987) presents an alternative system for categorizing learning methods applied
in respect of the use of educational simulations. The system is similar to that of
Freibichler, although the tasks of the student during the simulation is more explicitly
defined in this system. The following learning methods are distinguished:

(free) discovery learning. The student experiments on his own initiative,
learning by doing exercises. Exercises and instructions on paper are provided.
The student is instructed to predict the behaviour of the simulated system on
consequence of future interventions. The predictions are tested by performing
the interventions and observing the results. The exercises are presented in a
hierarchical sequence.
guided (coached) (discovery) learning. The principle of this learning method
is similar to that of learning by doing exercises. However, exercises and
instructions are not provided on paper but are generated by the computer
program based on the progress of the student. The implementation of this
learning method is still in the experimental stage.
problem oriented (discovery) learning. A system with an abnormal behaviour
(simulation case) is presented (e.g. a patient in the case of a medical
simulation). The student has to establish the cause of the disturbance
(diagnosis) based on an analysis of the behaviour of the system. A model of
the behaviour of a student when this learning method is applied has been
described by Gerrits and Min (1985).
learning by executing (scientific) experiments. When this method is applied,
the relation is studied between two model entities. The student repeatedly
changes the value of one of the two entities while the value of the other
entity is registered. The changes are made in a systematic sequence (e.g. in
discrete steps like 0.2, 0.4, 0.6, 0.8, 1.0).

Cyranek (1980) confirms that computer simulation programs can be very suitable
tools in order to enhance discovery learning as well as receptive learning. However,
he emphasizes that they are not the best tool for enhancing the retention of
knowledge. Furthermore, Cyranek states that simulations are not suited for the use as
a training device for the automation of skills, since the resemblance to the situation
in which the trained skills have to be applied (this resemblance is usually called
"fidelity") is too low.

12

However, Alessi (1988) concludes from his review of a great number of studies about
the fidelity of instructional simulation programs and simulators that simulations with
a relatively low fidelity are most beneficial to students in the first phases of skill
training while high fidelity simulations (especially dedicated simulators) are most
beneficial to students in the last phase. The fidelity of simulations has to be increased
gradually during the training. For this reason the best training results might be
achieved when simulation programs are used as a preparation for the use of
dedicated simulators. Furthermore, the costs of the training process may be reduced
by this approach since compared with most simulators simulation programs are very
cheap.

Alessi and Trollip (1985) distinguish four types of simulations. Their types are based
on the learning objectives of the simulations. However, the learning method used can
be related to these objectives. The following types of simulations can be
distinguished:

Physical simulations. The objective of the simulation is to enable students to
comprehend the behaviour of the simulated system. The creation of a mental
model of the functioning of the system, based on causal relationships between
entities that form a part of it is facilitated by simulations of this type.
Important tasks for the student in order to adapt his mental model are: the
generation of hypotheses, the testing of these hypotheses by means of
experiments with the simulation program and the observation and analysis of
the results of the experiments. Free discovery learning methods can be
applied as well as guided discovery learning methods.
Procedural simulations. The objective of the simulation is to enable the
student to train the procedures that are needed to control the simulated
system. Apart from the control of the system under normal conditions, the
diagnosis and correction of disturbances in the system (trouble shooting) can
be practised by means of this type of simulation. Usually the fidelity is
gradually increased during the learning process. Compared with physical
simulations procedural simulation programs may give a more extensive
instructional feedback. This extensive feedback can be realized because the
behaviour of the student during a procedural simulation is relatively
predictable (based on the correct execution of the trained procedure).
Problem oriented learning methods can be applied in this type of simulation.
Situational simulations. The objective of this type of simulation is to enable
the students to comprehend the functioning of a system (e.g. an office of a
company), in which the influence of decisions taken by human beings is
predominant. In this case the students are asked to play roles of persons that
are part of the simulated system. Some of the roles may be played by
professional actors. The simulated system is not simulated by means of a

13

computer program (the major part of the system is simulated by the
students); however, a computer may be used as an informative system. The
students may exchange information with the help of the computer. Guided
discovery learning methods can be applied.
Process simulations. The objective of this type of simulation is to enable the
student to understand the progression of a dynamic system (confusingly called
"process"; terminology used in system dynamics and in process technology
differ in this respect) under normal and abnormal conditions (e.g. the
development of the national economy as a result of the value of the interest
rate). Usually, the simulation program is run several times; in each run
different initial values for the studied parameters are used. During the
simulation run, the values of the parameters are not changed. The applied
learning method conforms with the definition of the method 'learning by
executing (scientific) experiments'.

Although computer simulation programs can be used to enhance many learning
methods, the importance of simulations for improving discovery learning is
emphasized by several authors (Freibichler (1978), Hinton (1978), Foster (1984),
Shrock (1984) and Gorny (1988)). The use of simulations in the context of discovery
learning is highly emphasized since simulations have proved to be excellent tools for
acquiring insights that can not be gained by more traditional didactic methods.
According to Martens (1978) simulation programs enable the student to obtain
personal experience by experimenting with the simulated system. Noonan (1981)
pointed out that valuable experiments by means of simulations in the context of
discovery learning are based on two dynamic aspects: logical observation and analyses
of the output produced by the simulation program and the mental model of the
simulated system in the mind of the student. A phase in which students gain concrete
personal experience by means of acting has been mentioned by Kolb and Goldman
(1973) and by Romiszowski (1981). Kolb and Goldman consider this phase inevitable
in order to enable the student to construct an adequate mental model.
During discovery learning the student is hardly influenced by the teacher. Because of
the absence of the influence of the teacher the student has to process the information
himself. In consequence of this, the mental model is constructed in a very personal
way. Bruner (1981), Liao (1983) and Harris and Taylor (1983) point out that a
personal mental model construction improves the retention of information. Wedekind
(1981) stresses that apart from experimenting with real systems this kind of
experience can only be gained by experimenting with simulated systems, since
experiments with real systems and experiments with simulated systems share many
characteristics. Furthermore, Bork (1981) pointed out that simulations may provide
students with learning experiences that are difficult to obtain in everyday life.

14

Moore and Thomas (1983) state that computer simulation can be a valuable
alternative to traditional laboratory work in secondary school teaching. According to
them computer simulations may serve the same cognitive and affective objectives as
generally served by real laboratory work like:

Learning skills and techniques.
Aiding pupils' understanding of the subject matter and facilitating concept
formation.
Helping the pupils to hypothesize and develop an understanding of the
scientific method.
Motivating and stimulating interest in the study of science.

However, according to their experience, real laboratory work is better suited to
achieve the last mentioned goal, since students find some simulations dull compared
to real experiments. This disadvantage may be overcome by improving the appeal of
the simulations. Min et al. (1986) hypothesize that educational computer simulation
programs designed according to the specifications given by them may be very
attractive to students, since these programs show many similarities to video-games.
Another disadvantage of simulations, compared with real laboratory work that Moore
and Thomas have experienced is that students may become confused in case the
results of the simulation deviate from reality. However, these deviations can be
eliminated by merely using properly validated models as a basis for educational
simulations. According to the experiences of Moore and Thomas (1983) simulations
show two advantages in comparison with traditional laboratory work:

Apart from simulating an experiment, the computer program may give
guidance to the students as well. The guidance can be adjusted to the level of
the student (either automatically or by the student himself).
The participation of the students in the planning, observation and evaluation
is better in simulated experiments than in real experiments.

Kolb and Goldman (1973) emphasize that apart from concrete experience gained by
the students experimenting with simulated systems, the skill to obtain concrete
experience itself is trained also by working with educational computer simulation
programs. Furthermore, Foster (1984) pointed out that the skill to generalize from a
specific case by means of induction can be trained by working with educational
simulations. This means that working with a simulation program in the context of
discovery learning may have two favourable effects at the same time:

the students mental model of the simulated system is improved.
the student is helped to solve completely different problems, which he may
meet in the future.

15

2.2.2. The visualization of the simulated system

A simulated system may be visualized by means of several presentation forms like:
a realistic picture generated by means of video-techniques or by means of
digitizing equipment.
a simplified realistic picture drawn by means of a graphical editor.
an analogous diagram drawn by means of a graphical editor.
a relational diagram drawn by means of a graphical editor.
a set of mathematical formulae presented on the screen by the computer
program in a direct way.

The state of the system may be presented by means of animation techniques
superimposed on the visualization. These animations are controlled by the computer
program on the basis of output variables values of the simulation model.

The level of abstraction of the visualization realized by means of these techniques
varies from very concrete (e.g. an image realized by means of video-techniques) to
very abstract (e.g. a set of mathematical formula). Hebenstreit (1988) emphasized the
importance of semi-concrete presentations of simulated systems (e.g. analogous
diagrams or relational diagrams) and introduced the concept 'abscrete' for this type
of visualization. He points out that the main interest of simulation lies in the
pedagogical value of this intermediate level of abstraction in between the real
phenomenon and the abstract model, in the form of a set of relations describing the
behaviour of that phenomenon.
Gorny (1988) mentioned iconic (semi-concrete) presentation of data as one of the
direct results of the transfer of the demands of the discovery learning method to the
design of the user interface for a computer enhanced learning environment. This
means that iconic presentation techniques are essential in case of simulations used in
the context of discovery learning.

According to Alessi (1984) the advantage of simulations lies not only in their ability
to imitate reality, but also in their ability to simplify reality. A simplification of reality
is easier to comprehend and to control, especially for beginning students. As students
become more proficient, the simulation may become more realistic and can include
more details found in the real phenomenon. Elron (1983) pointed out that apart from
the fact that simplifications of reality fit the picture of discovery learning better, a
feeling of reality is enhanced by them as well. This means that the best simulations
are not those simulations in which reality is presented in its full complexity. Good
simplifications are more convenient.

In conclusion two techniques for presenting a simulated system are of great

1 6

importance to educational simulation programs:
an iconic (semi-concrete, abscrete) presentation,
a simplified realistic presentation.

For this reason a design system for educational computer simulation programs must
support the design of programs in which both presentation techniques have been
implemented.

2.2.3. Output of the results of the simulation

The output of the results of the simulation can be presented by means of several
display forms such as:

Animations. When animation techniques are driven by output variables of the
simulation model a very concrete presentation of the state of the simulated
system can be achieved. Usually the animation is superimposed on a static
visualization of the simulated system (e.g. an animation of the water level of
a tank can be superimposed on a static picture of the tank).
Dynamic graphs. A dynamic graph is a convenient display form for the time
registration of the values of output variables (e.g. a time registration of the
number of individuals in a population model).
Dynamic histograms. A dynamic histogram is a convenient display form for
the distribution of classes of output variables (e.g. the length-frequency
distribution of a fish stock).
Tables. Tables are used for the display of the exact values of output
variables.
Pie-charts. In many cases variables are calculated by adding the values of
other variables (e.g. the profit of a multinational enterprise is calculated by
adding the profits made in each of the countries in where the enterprise
operates). A pie-chart is a convenient display form to show the relative part
taken up by each of the contributing variables.
Phase diagrams. Phase diagrams are used in order to facilitate the
comparison of the phases of two output variables.
Three dimensional plots. Three dimensional plots enable the study of the
interrelations between three output variables.

Most of these display forms are relatively abstract (especially phase diagrams and
three dimensional plots). However, when animation techniques are supported by
video-techniques very concrete presentations can be achieved.

Animations, dynamic histograms, dynamic graphs and tables are common display

17

forms in educational computer simulation programs; pie-charts, phase-diagrams and
three dimensional plots are used only occasionally. For this reason a design system
for educational computer simulation programs must support the design of programs
in which the first four display forms have been implemented.

2.2.4. Control structure of the program

Min and Struyker Boudier (1985) described a series of simulation programs designed
with the RLCS-system, a design system for educational computer simulation
programs. They pointed out that an educational computer simulation program must
have five control functions (based on experience of Bloch et al. (1979), gained while
designing the MACDOPE program):

Time. By means of this function the calculation process can be started,
interrupted and started again.
Change. By means of this function model entities can be changed. Usually
only entities relevant from a didactic point of view can be changed.
Inspect. By means of this function the values of relevant variables can be
acquired.
Select Case. By means of this function a simulation case can be started.
Restart. The present case can be restarted by means of this function.
Quit, by means of this function the execution of the simulation program can
be terminated.

Apart from the control functions mentioned by Min and Struyker Boudier, which
must be present in every simulation program, simulation programs may have
additional control functions. Common additional control functions are:

Write. By means of this function the results of the simulation and
interventions made during the simulation process are stored in files. The
students can use these files after the termination of the simulation program
in order to analyze the results of the simulation. The data present in the file
can be read from the screen, printed on a printer or processed by means of a
computer program (e.g. through a spread-sheet program or by means of a
text editor).
Dimensions. By means of this function the scales can be changed of the time
registrations axes.
Output. By means of this function the student can define which variables are
displayed by the program
Hardcopy. By means of this function a hardcopy of the screen can be made
on a printer.
Recover. By means of this function the student can recall information which

18

is no longer present on the screen as the simulation progress. Furthermore
this function may enable the student to replay the simulation process in
reverse order.
Explain. By means of this function information can be selected about the
control of the program, general program information or information about a
specific case.
Screen. By means of this function the student can select a different screen. In
some cases this function may enable the student to change the display
arrangement.

In educational computer simulation programs, the screen is used for three different
tasks at the same time: the control of the program, the presentation of the simulated
system and the output of data produced by the simulation program.
Latzina and Wedekind (1986) point out that the student may become confused if
these tasks are not properly separated from each other. Van Schaick Zillesen and
Min (1988b) distinguish four techniques for achieving this separation. In chapter 4
these techniques are described in detail. In a well-designed educational computer
simulation program one of these techniques should be consistently used.

2.2.5.Interactions between student and model

The user interface of some educational simulation programs based on a continuous
dynamic model can be designed in such a way that the student is allowed to interrupt
the calculation process to change a model entity. After the completion of this change
the student may start the calculation process again. The calculation process continues
from the new state of the model entities. Gorny (1988) emphasizes the importance of
this intervention method and mentions it as one of the direct results of the transfer
of the demands of the discovery learning method to the design of the user interface
for a computer enhanced learning environment. Furthermore, Daldrup and Gorny
(1989) mention that the user interface of a simulation program should offer the
opportunity to input data in a quasi-analogous way. Moreover, the learner should
have the opportunity to manipulate data and the model in the most direct way
possible when the discovery learning method is applied (mentioned by Latzina and
Wedekind (1986) and by Daldrup (1987)).

Automatic instructional feedback given to students working with an educational
computer simulation program is usually very poor. This has several reasons such as:

In many cases the discovery learning method is applied. This method implies
that hardly any instructional feedback is given.
Student models on which this feedback can be based are lacking. It is

19

extremely difficult to construct these models due to the open context in which
most educational simulations are applied.
The interpretation of the state of a complex dynamic model is extremely
difficult. However, this problem may be overcome soon due to the fast
development of expert system techniques which may facilitate this
interpretation. Especially the future use of neural networks looks very
promising in this respect.

Nevertheless some simulation programs give useful instructional feedback in the form
of messages triggered to the value of model variables (e.g. an alarm message
generated as soon as the value of the oxygen concentration in the water of a
simulated fish pond drops below a critical level).

2.3. A METHOD FOR THE SYSTEMATIC DESIGN OF EDUCATIONAL
COMPUTER SIMULATION PROGRAMS

In the previous part of this chapter specifications have been formulated for the
design of educational computer simulation programs. A method for the design of
these programs should enable the design of programs in conformity with these
specifications. In conclusion the design method must allow for the design of programs
with the following specifications:

The programs are meant to be used in the context of the discovery learning
method or in the context of the guided discovery method.
The system simulated by the programs is visualized by means of a simplified
realistic picture or by means of an iconic presentation.
Simple computer animation techniques may be applied in order to present
the state of the simulated system. These animations are controlled by the
values of variables of the model.
The results of the simulation are presented by means of graphical output.
The graphical output may be displayed in the form of dynamic histograms or
dynamic graphs. Occasionally tables may be used in order to present the
exact values of the output variables.
The control structure of the programs must be consistent and transparent to
the user. The following control functions must at least be supported: 'Time',
'Change', 'Inspect', 'Select Case' and 'Quit'.
The visualization of the simulated system, the control structure of the
program and the graphic output of the programs are clearly separated from
each other.
Students working with the programs must be allowed to change the values of
model entities at all times during the simulation not causing the calculation

2 0

process to break off.
Students working with the programs must be able to intervene with the
model in a direct way, preferably by means of direct manipulation.
The programs may give instructional feedback to the student. However, this
feedback will be limited to messages triggered to critical levels of output
variables.

In this part of the present chapter a design method is described, enabling the design
of educational computer simulation programs conforming to the 9 specifications
mentioned above. The method is designed on a hardware and software-independent
level. Furthermore, three implementations of the method are described:

MacTHESIS. A design system for applications implemented on Macintosh
microcomputers and on Atari ST microcomputers with a Macintosh emulator.
The version of MacTHESIS described in this thesis has been developed by
Min, Reimerink and Van Schaick Zillesen; earlier versions of MacTHESIS
have been described by Min et al. (1986) and by Van Schaick Zillesen and
Min (1987). MacTHESIS is used for constructing the most advanced
prototypes described in this thesis.
THESIS. A design system for applications implemented on IBM-XT
compatible microcomputers. The version of THESIS described in this thesis
has been developed by Van Schaick Zillesen; an earlier version of THESIS
has been described by Van Schaick Zillesen and Min, (1988). THESIS is
used for constructing prototypes used in field-tests as described in this thesis.
MacTHESIS (HyperCard version). A design system for applications with a
user-interface consistent with that of CAL-materials made with HyperCard.
The version of MacTHESIS (HyperCard version) described in this thesis has
been developed by Van Schaick Zillesen, based on the first version of
MacTHESIS, developed by Renkema (1985). This system is used for the
construction of the prototype CELLS. The prototype CELLS and a field-test
for which it was used are described in this thesis.

2.3.1. Overview of the design method
The major purpose of an educational computer simulation program is to provide
students with a presentation of a system on a computer screen. The simulated
system of an educational simulation program is a limited part of the reality, selected
by the designer of the program because of its educational value. Some examples of
simulated systems, described in this thesis are the human body, a fish pond, an
ecosystem on the arctic tundra, the national economy and a chemical plant. The
computer simulation program enables the students to test their mental model on the
simulated system by means of active experimentation. During the simulation session

21

the students change the conditions under which the simulated system operates and
observe the reactions of the presentation of the system to these interventions.

An educational computer simulation program consists of three major layers or shells
(Fig. 2.1). The outer shell is formed by the educational representation of the
simulated system. During the simulation session the students interact with this shell.
The "heart" of the program is formed by the model code. The model code is the
technical representation of the simulated system in the computer program. By means
of this code the program is able to simulate the behaviour of the simulated system. In
between the outer shell and the heart of the program there is an interactive
interface. On the one hand the structure of this interface is decisive for the way the
results of the model code are translated to the student (e.g. in the form of dynamic
graphical displays or in the form of animations); on the other hand the actions of the
student controlling the program (e.g. starting the program, inspecting the values of
variables or directly manipulating the presentation of simulated objects) are
translated to the model code in this interface. Data can be transferred between the
simulation programs and other educational software by means of this interface.

The development of an educational computer simulation requires the cooperation of
experts in many fields like: mathematical modelling, educational software design,
graphical design, curriculum design and didactics. The participation of students is
essential in program development, since no good quality of educational courseware
can be made without repetitive evaluation and revision.

Modelling, designing educational computer simulation courseware, implementing the
courseware within a curriculum and learning by means of the courseware each makes
different demands on the technical knowledge of the user. A simulation method must
provide a separate working environment for each one of these activities. In each
working environment (later referred to as the modeller's environment, the designer's
environment, the teacher's environment and the student's environment) only a part of
the courseware can be altered using tools. The part of the courseware which can be
altered and the tools which are used in order to make these changes, differ greatly
from one environment to another.

Modeller's environment
The modeller builds the mathematical model on which the educational computer
simulation program is based. In many cases the development of a mathematical
model is the most time-consuming part of simulation courseware development.
Furthermore, this work can only be done by a highly skilled expert. For this reason
the development of a new mathematical model taxes the costs of the development of

22

Figure 2.1. Overview of the design method. An educational computer simulation program
consists of three shells: the model code, the interactive interface and an educational
presentation of the simulated system. Several persons may be implicated in the design and
development of a program: modellers, educational engineers, designers, teachers and students.
A separate working environment exists for each one of these persons.

simulation courseware heavily. However, when existent models are used, these costs
can be greatly reduced. In many cases models which are constructed with objectives
like scientific research or management can be used for this purpose. These models
may have many formats like mathematical formulae, analogous diagrams, flow chart
symbols, relational diagrams or computer program listings.

2 3

The composition of a mathematical model strongly depends on the modeller's mental
model of the system, which itself depends on the objective of the modelling. If the
objective of the modelling differs from education, adaptations are usually required in
order to enhance the educational value of the model. Mathematical models can be
constructed or adapted by means of interactive modelling systems (e.g. DYNAMO,
STELLA or LABVIEW), special purpose simulation languages (e.g. SIMULA or
CSMP) or compilers or interpreters for standardized computer languages (e.g.
BASIC, FORTRAN, PASCAL or MODULA).

Designer's environment
The educational engineer is the central person in the design process. He selects the
mathematical model and designs the presentation of the simulated system. This
design is based on his knowledge about instrumentation and specifications, for which
he has to consult content specialists, curriculum specialists and specialists in didactics.

The interactive interface is created or adapted according to the design made by the
educational engineer. The interface is defined by means of resources, which can be
modified by means of interactive general purpose packages or by means of other
educational programs (in order to transfer data to the simulation program). The
resources may contain information about:

The mathematical model
Cases
Exercises
Text used by the computer program
The required graphical output
Graphical information (e.g. the graphical display of the simulation results, the
background for an animation or an iconic presentation of the simulated
system)

During the simulation session a computer program continuously shows a presentation
of the condition of the simulated system to the student. Furthermore, this program
controls the interactions between the presentation and the student.

Two experts may assist the educational engineer. A computer programmer may adapt
the controlling program, based on specifications made by the educational engineer.
Furthermore a graphical designer may design part of the resources (mainly the
graphical information), based on drafts and instructions prepared by the educational
engineer. No programming skills are required in order to modify the resources.

24

Teacher's environment

2.3.2. MacTHESIS

MacTHESIS is a system for the design of educational computer simulation programs
that can be executed on Macintosh computers and on ATARI computers equipped
with a Macintosh emulator. The system works on Macintosh computers with at least
1 Mb internal memory and a hard disc. In Figure 2.2. the structure of the
MacTHESIS system is given.

Like all systems described in this thesis, MacTHESIS provides for five working
environments. All environments are integrated except for the environment of the
modeller. Most educational computer simulation programs are based on already
existing models (usually developed for other purposes than education) in order to
reduce the costs of the courseware development. However, it is impossible to
standardize the implementation of already existing mathematical models in a design
system for educational computer simulation programs without limiting the scope of
the design system to only a small number of model formats. This limitation would
greatly reduce the practical value of the design system since it would put a limit to
the number of mathematical models which could be implemented in the system. In

25

Several problems may occur when a teacher tries to implement an educational
computer simulation program in a curriculum. The courseware may use an
instructional strategy that does not conform to the teacher's educational philosophy.
Furthermore, the language used by the courseware may differ from that used by the
students, or the terminology used in the courseware may not conform to that used in
other educational materials (e.g. books) as used by the students. Moreover, the
courseware may present the simulated system in a way that does not appeal to the
students (e.g. the presentation is too abstract or too concrete). The teacher may
overcome these problems when he is able to adapt the resources (text, graphic
information, cases and exercises) used by the courseware. These adaptations can be
made with interactive general purpose packages.

Student's environment
In the student's environment the student controls the simulation in an interactive
way. However, the student is not able to adapt the program itself. The computer is as
transparent to the student as possible. The student does not have to possess any
knowledge or experience about computers, programming or informatics in order to
be able to work with the software.

Figure 2.2. Structure of the design system MacTHESIS; m = model code; PS = program source;
RF = resource file; GB = graphical file (bitmap format); EP = executable program; r = resource
code

practice mathematical models on which educational applications can be based are
very hard to find, even without this limitation. Models in almost all existing formats
(e.g. mathematical formulae, analogous diagrams, flow chart symbols, relational
diagrams or computer program listings) are used as a basis for applications designed
with the design systems described in this thesis. However, the models have to be
transferred to the format required for the design system before the model-code can

2 6

be implemented in the design systems. This conversion is usually done by the
educational engineer without the help of a computer program.

Apart from the working environment of the modeller, four integrated working
environments are provided for in the design systems described in this dissertation: the
environment of the educational engineer, the environment of the graphical designer,
the environment of the teacher and that of the student. Usually there is a close
cooperation between the educational engineer and the graphic designer, who designs
the most complex screens based on drafts made by the educational engineer. For this
reason the environment of the educational engineer and that of the graphic designer
are combined and described as the designer's environment. The working
environments of MacTHESIS are described below.

Student's environment
When a program designed with MacTHESIS is in use, the keyboard is completely
redundant. As the presence of the keyboard can only be a disturbing factor, it is best
to remove it before the start of the simulation. The applications are provided on a
turnkey floppy-disc. After the insertion of the floppy-disc in the computer, the
program is started by switching on the computer. The computer's operating system is
hidden to the students. After the start of the program the title page appears. This
page can be removed by clicking in the OK-button. After the removal of the title
page three windows appear, each one containing a visualization of the simulated
system or a graphical display of the results of the simulation. Students can switch
from one window to another using the mouse. Furthermore, during run time the
display arrangement can be adapted since the windows can be moved and their seizes
can be changed.

Many systems of visualization can be used separately or in combination with each
other like diagrams, formulae, static graphics or vivid animations. In most
applications active regions are present in the visualization. These regions are
indicated by means of dots or by means of colour. Students can change the values of
model entities by means of animated scroll bars which appear as soon as they click in
the indicated active regions, using the mouse. This technique of changing model
entities has been called input-animation-technique by Van Schaick Zillesen and Min
(1987); a screen dump of an application in which this technique is applied is
presented in Figure 2.3. The application of the technique enables the students to
interact with models by means of direct manipulation.

The programs can be controlled by means of a menubar which is always present at
the top of the screen. The menubar enables the student to select the following

27

Figure 2.3. Screen dump of the prototype CHEMISTRY, designed with MacTHESIS. In the
three largest windows parallel animation and graphical time registration takes place. Students
can intervene with the model by means of the input-animation method (by selecting a tap and
manipulating the scroll bar which controls the opening of the tap, using the mouse) at any
time during the simulation.

control functions: 'Change', 'Inspect', 'Time', 'Case' and 'Quit'. The meaning of these
functions has been described in chapter 2.2. Furthermore, the student can select the
function 'Apple'. By means of this function the student can retrieve the title page or
select a standard display arrangement. In most cases programs designed with
MacTHESIS are used in combination with separate paper materials with information
about the subject matter, instructions, exercises and cases in order to guide the
student during the learning process.

Teacher's environment
Educational computer simulation programs may use a learning method that does not
conform to the educational philosophy of the teacher who wants his students to use

2 8

the programs. Moreover, an educational computer program may produce text in a
language unknown to the students or use a terminology that differs from the
terminology used in other educational materials (e.g. books) that are used in the
curriculum.

Programs designed with MacTHESIS are adaptable and allow the teacher to
overcome the problems mentioned above by adapting the learning environment. The
quantity of text produced by the programs is reduced to a minimum. The text that is
used can be adapted by means of a separate resource editor. The resource editor is a
very powerful tool; when this editor is used the adaptations are made in a highly
interactive way. Besides, the static backgrounds of the graphical displays can be
replaced by means of this editor. New backgrounds can be designed with common
graphical editors like MacPaint or PixelPaint.

The educational computer simulation programs are used in combination with paper
materials. The teacher can develop his own materials or use other existing materials
in combination with the program. Thus the teacher is able to create an optimal
learning environment in accordance with the learning method preferred by him and
consistent with other educational materials used during the curriculum.

Designer's environment
The following items are required in order to develop an educational computer
simulation program with MacTHESIS:

The MPW-Pascal workshop
A graphical editor like MacPaint, MacDraw or PixelPaint
The SIMLIB-library (the main software part of MacTHESIS)
tools belonging to MacTHESIS
the source of an existing program developed with MacTHESIS, including the
program source as well as the resource files and graphical documents
the MacTHESIS manual (the paper part of MacTHESIS)

An essential part of the MacTHESIS manual is a structured algorithm for the
development of a new application. The main steps of this algorithm are:

First the mathematical model has to be made 'ready for implementation'.
This means coding the model equations in the Pascal language, making a list
of model entities, declaration of starting values of these entities and
development of simulation cases. It also includes some decisions about the
runtime of the model and the dimensions of the iteration process (usually
Eulers' method for integration is used).
After this activity, the educational design of the program must be made. This

29

includes the selection of relevant interventions, the design of the static
background of the graphical displays, the design of the visualization of the
model and the composition of the text used by the program. Ten
standardized forms for the display of the output of the simulation are already
available in order to facilitate this design phase.
As soon as the educational design is complete, the technical development
starts. This process includes the adaptation of the MacTHESIS source-file
according to the results of the activities mentioned above. The text in the
resource-files has to be adapted as well. The background for the graphical
displays has to be realized by means of convenient graphical editors. The
graphical documents generated by means of these editors are inserted in the
resource-file by means of the resource-editor. In case input-animations are
used the active regions have to be determined (by means of the tool program
COORDINATES or by means of the editor MacPaint II). Animations other
than input animations are only slightly standardized in MacTHESIS, since
these animations differ greatly from one program to another. Nevertheless
procedures supporting the movement of a pre-defined object driven by the
values of variables of the mathematical model are included in SIMLIB.
The construction of the educational computer simulation program, using the
MPW-system.
After the completion of the software development, the most time-consuming
phase of the process of development starts. This includes the design of the
program documentation, program manual, description of the educational
cases and paper materials for the students.

2.3.3. THESIS

THESIS is a design system for the design of educational computer simulation
programs that can be executed on computers placed by the NIVO project on
secondary schools in the Netherlands. The NIVO-project made part of the
Information Stimulation Plan (INSP), which has been described by Van Deursen
(1988). The main characteristics of the computers placed by the NIVO project are:

The computers are IBM XT compatible.
An MS-DOS operating system (version 3.1 or higher) is used.
The computers are provided with a CGA card. This graphic card has a
limited resolution (640 x 200 picture elements).
The keyboard has a QWERTY-type layout. It is equipped with at least ten
function keys, a numerical pad and cursor control keys.
No pointing device (e.g. a mouse) is provided for.
The computers are equipped with an educational software package; a

30

windowing package (e.g. MS-Windows or GEM) is not provided for.
Compared with Macintosh or Atari computers, the hardware provided by the
NIVO-project is slow.

Due to the specifications mentioned above, the user interface of programs designed
with THESIS can not be as advanced as that of programs designed with MacTHESIS.
The main limitations are:

An additional input device is not supported.
Windows with visualizations of the simulated system and windows with
graphic output of the simulation can not be presented simultaneously on the
same screen. The graphical resolution and the processing speed of the
computers make it impossible to realize this type of screen arrangement in a
convenient way.

In Figure 2.4. the structure of THESIS is given. In THESIS the same environments
are provided as described for MacTHESIS. The student's environment, the teachers
environment and the designer's environment are integrated. All these environments
can be implemented on the computers placed by the NIVO-project. The
environments are described below.

Student's environment
Programs generated by means of THESIS are supplied on a turnkey floppy-disc.
When a program is started (by switching on the computer) a title page appears. This
page can be removed by pressing the RETURN key. There are two levels present in
the programs: the main level and the simulation level. The structure of an application
designed with THESIS is given in Figure 2.5. After the removal of the title page the
menubar of the main level appears. The menubars of the applications are controlled
by means of the computer's cursor control keys and the RETURN key. The menubar
of the main level enables the student to use one of the following control functions:
'Explain', 'Case' and 'Quit'. The meaning of these functions is described in chapter
2.2. After the selection of a simulation case the simulation level of the program is
activated.
As a result of the activation of the simulation level the menubar of the main level is
replaced by that of the simulation level. Furthermore a number or numbered screens
is present at the simulation level. In each screen a visualization of the simulated
system or graphical output of results of the simulation is shown. Students can switch
from one screen to another using the menubar, or by typing the number of the
screen.
The same types of visualizations can be used as described for programs generated by
means of MacTHESIS. In most programs relevant objects in the visualizations are

31

Figure 2.4. Structure of the design system THESIS; m = model code; PS = program source; GT
graphical file (text format); GB = graphical file (bitmap format); EP = executable program.

indicated by means of numbers. When a function key corresponding with one of
these numbers is pressed a small window appears. This window can be used to
change the value of the model entity presented by the numbered object by typing in a
new value. The following control functions can be selected from the menubar of the
model level: 'Time', 'Inspect', 'Recover', 'Explain', 'Change', 'Screen' and 'End'. By
means of the 'End' function the students can restart the simulation case or reactivate
the main level. The meaning of all other control functions is explained in chapter 2.2.

32

Figure 2.5. Structure of an application designed with THESIS

The structure of applications generated by THESIS is more complex than that of
applications generated by MacTHESIS. A status line, informing the student about his
location within the software structure has been implemented in order to overcome
this problem. The status line contains the following information:

The number of the screen shown on the monitor.

33

The name of the simulation case that is studied.
The simulation time.

Programs generated by means of THESIS are used in combination with paper
materials in the same way as programs generated by means of MacTHESIS.

Teacher's environment
The teachers environment of the THESIS system can be used in order to adapt or to
translate all text used by the executable programs. Furthermore, the static
background of the screens can be changed even after the compilation of the program.
These adaptations are possible because all information about text and graphic
elements (text, lines, squares, dotted lines) is stored in separate graphic files. These
files are stored in an ASCII format. Because of these features, a teacher can edit the
files using a text-editor or wordprocessor with which he is familiar (almost all
text-editors and wordprocessors are provided with a facility to read and write textfiles
in ASCII format).
THESIS is provided with tool programs facilitating this process of adaptation. By
means of these programs, graphic files that are part of an application generated by
THESIS can be shown on the screen. Many modern wordprocessors enable the
execution of external programs. Adaptations of graphic files can be made in an
efficient and interactive way when such a wordprocessor is used since the graphic
files can be edited and the results of these changes can be shown on the screen
without having to leave the wordprocessor.

Designer's environment
The following items are required in order to develop a new application with THESIS:

Turbo-Pascal
the THESIS library
two tools belonging to the THESIS system. One tool is used for converting
graphic files produced by means of graphical editors (.PCX format) to a
format that can be read by applications generated by means of THESIS; the
other tool is used to show the graphical displays stored in the graphic files
belonging to applications designed with THESIS.
the source of an existing educational computer simulation program developed
with THESIS, including the program source as well as the ASCII-files with
text and graphic elements
The THESIS manual

34

An essential part of the MacTHESIS manual is a structured algorithm for the
development of a new application. The main steps of this algorithm are:

First, the model has to be made 'ready for implementation' in the same way
as described for MacTHESIS.
After this activity, the educational design is made in the same way as
described for MacTHESIS. However, in THESIS only 5 standardized forms
are available for the display of the output of the simulation.
When the educational design is available, the technical implementation starts.
This includes the adaptation of the THESIS source-file according to the
results of the activities mentioned above, compiling this file and creating the
ASCII-files used by the executable program. Most of the graphics are made
by typing in the graphic files and by showing those files on the computer
screen by means of a tool program. Furthermore, a graphic editor like
MS-Paintbrush can be used in order to design very complex graphic screens.
THESIS supports the use of graphic documents, stored in the bitmap format
described in the Turbo-Pascal manual. However, existing graphical editors
usually do not support this format. No standard for storing this type of
information under the MS-DOS exists. For this reason, the designer has to
convert the graphic documents from the format produced by his graphical
editor to the format used by THESIS using a tool program.
After the completion of the technical development, the paper part of the
learning environment has to be developed.

2.3.4. MacTHESIS (HyperCard versions)

The student's environment of educational computer simulation programs generated
by means of the design systems MacTHESIS and THESIS consists of two parts: the
computer program and the paper materials. The paper materials are used to guide
the student during the learning process. However, it might be more convenient to
guide the students by means of interactive CAL (Computer Assisted Learning)
materials instead of paper materials. Recent developments in the field of software
systems, in particular the introduction of HyperCard, enabled an efficient
development of a learning environment in which computer simulation programs are
integrated with other CAL materials. In this way, a completely automated learning
environment can be constructed. The advantages and disadvantages of this type of
automated learning environment is discussed in chapter 5. A special version of
MacTHESIS is designed in order to enable the design of educational computer
simulation programs with a user interface similar to that of CAL materials made with
HyperCard. This version of MacTHESIS is described in this chapter. The structure of
this design system is presented in Fig. 2.6.

3 5

T E A C H E R S T U D E N T
Figure 2.6. Structure of the design System MacTHESIS (HyperCard version); m = model code;
PS = program source; RF = resource file; HS = Hypercard stack; EP = exécutable program; r =
resource code.

Student's environment
The simulation packages generated by means of MacTHESIS (HyperCard version)
consist of two parts: a stack of CAL materials made with HyperCard and a series of
simulation programs made with MacTHESIS.

36

The HyperCard stack consists of so-called hypercards. A student can switch
dynamically from one card to another by clicking in the buttons present on the
hypercards. Moreover, the same type of buttons is used to switch from a hypercard to
a simulation program and vice versa.
A hypercard may contain several types of information (or combinations of these
types) such as:

text
graphic presentations
multiple choice questions
open questions
animations

Based on the answers to the presented questions several types of feedback may be
given to the student like:

presenting another card with information
showing a message on the present card
superimposing a window with a message on the present card
showing an animation on the present card or on another card
changing text on the present card or on another card
running a simulation or another external program

HyperCard is a very flexible package. Several types of CAL materials can be easily
made like: tutorials, graphic database systems, drill and practice systems and simple
animations. Several learning methods can be supported varying from discovery
learning (completely learner controlled) to completely computer controlled learning
methods. The simulation programs made with MacTHESIS mimic the HyperCards. In
Fig. 2.7 a HyperCard and a simulation program made with MacTHESIS are shown.
Two of the functions of MacTHESIS, showing the title page and presenting a
visualization of the simulated system, are transferred to the stack. The only display
shown by the simulation programs is a time registration of the results of the
simulation. A new simulation program is generated for each simulation case. The
simulation programs are controlled by means of buttons, present under the time
registration display. The buttons are identical to those used in the stack. They student
may activate the following control functions by means of the buttons: 'Time',
'Restart', 'Inspect', 'Change' and 'Return'. The 'Return' function enables the student
to return to the hypercard from which the simulation program was activated. The
other control functions are described in chapter 2.2. A separate 'Change' button is
provided for each model entity that can be changed. All the other CAL materials
(general information about the content matter, instructions, exercises and
introductions of cases) are implemented in the stack. For this reason separate paper
materials are redundant.

37

Figure 2.7. Four screendumps of the prototype CELLS (HyperCard version). Fig. 2.7.a. shows
a card with information about the subject matter; Fig. 2.7.b. shows a simulation program; Fig
2.7.c. shows a card for guided exploratory learning; Fig. 2.7.d. shows a card for selecting the
route through the prototype. The simulation program (2.7.b) generated by means of
MacTHESIS (HyperCard version). The cards (2.7.a, 2.7.C. and 2.7.d) are made with
HyperCard. The user-interface is consistent in all parts of the prototype. The prototype is
described in detail in section 3.2.3. The evaluation of the prototype is reported in section 5.2.

Teacher's environment
Harvey (1988) describes the organization of hypercard stacks. Any hypercard stack is
organized in five user levels:

Browsing. When this level is selected the user is allowed to use the browsing
options of HyperCard. The browsing options include viewing cards in the
stack, locating specific information in cards and using the buttons.
Typing. When this level is selected the user is allowed to use the browsing
and editing options of HyperCard. The editing options include adding text to

3 8

cards, changing text and adding and deleting cards in the stack.
Painting. When this level is selected, the same options are available as
described for the Typing level. Furthermore, the user is allowed to add,
delete and modify graphic elements in the stack. For this purpose interactive
painting tools are available.
Authoring. When this level is selected, the same options are available as
described for the Painting level. Furthermore, the user is allowed to design
new card forms and to link HyperCard-stacks with each other.
Scripting. When this level is selected all options of HyperCard are available.
The user has complete access to HyperTalk, a computer language included in
the HyperCard program.

In the student's environment the user level is automatically set on the browsing level.
However, the teacher can change all the properties of the stack (or even create a
completely new stack) in an interactive way by selecting a convenient user level.
Furthermore, the teacher can adapt or translate all the text produced by the
simulation programs in the way described for the standard version of MacTHESIS.

Designer's environment
The following requirements are needed in order to develop a new application with
MacTHESIS (HyperCard version):

The Lisa Pascal Workshop implemented on a Macintosh XL (Lisa) computer.
The Lisa Pascal Workshop is a UCSD Pascal-like programming environment.
The Macintosh XL is used to generate the simulation programs. The
programs can be executed on a normal Macintosh computer.
The source of an existing educational computer simulation program
developed with MacTHESIS (HyperCard version), including the program
source and the resource file.
The HyperCard program implemented on a Macintosh computer.
The MacTHESIS (HyperCard version) manual

The process of program development is similar to that of MacTHESIS (standard
version) and THESIS. However, a completely computer based learning environment
is to be developed. The main steps in the process of design and development are:

The model has to be made 'ready for implementation' in the way described
for MacTHESIS (standard version) and THESIS.
After this activity, the educational design of the package has to be made. The
display of the simulation programs generated by means of MacTHESIS
(HyperCard version) is highly standardized. For this reason the activities in
respect to the design of these programs are limited to the selection of the

3 9

relevant interventions and the composition of the text.
After the completion of the educational design, the technical development
starts. This includes the adaptation of the MacTHESIS source files according
to the activities mentioned above, constructing the simulation programs using
the Lisa Pascal Workshop and developing the other CAL materials using the
HyperCard program. Usually it is more convenient to adapt an already
existing stack than to create a completely new one, since the structure and
most card forms of the existing stack may be used again in the new stack.

2.4. Criteria and methods for the evaluation and description of educational computer
simulation programs

In practice, many methods for software evaluation are applied. Duchastel (1987)
distinguishes three main types of evaluation methods:

product review. The software is evaluated by experts. Criteria for the
evaluation are described in general terms.
checklist procedure. The software is evaluated by experts based on a
standardized evaluation instrument. The instrument consists of a list of
explicit criteria.
user observation. This software is tested in a real didactic environment.
Learners working with the software are observed. Student-computer
interactions may be recorded automatically. Additional information may be
gathered by testing the students before and after the computer session and by
means of evaluation forms, filled in by the students. This type of software
evaluation is usually called a field-test.

When the evaluation method of reviewing the product is applied, each expert will
emphasize other aspects of the evaluation based on his personal criteria. For this
reason, the results of the evaluation depend on the personal characteristics of the
experts. It is difficult to distinguish a good computer program from a bad one when
the programs are not evaluated by the same experts using this method.

Compared to the method of reviewing the product, the method of executing a
checklist procedure depends less on the personal characteristics of the evaluator
because the system of standardized criteria puts a limit to this influence. An example
of a very elaborated instrument for educational software evaluation has been
published by Kanselaar et al (1985). However criteria for the evaluation of
educational software must differ greatly from one type of educational software to
another because of the great differences in software structure and in learning
methods applied in different types of educational software. This is why it is hard, if

4 0

not impossible, to create an instrument which can be applied to all types of
educational software because of conflicting criteria. Most instruments published so far
are not very useful for the evaluation of educational computer simulation programs
since not enough emphasis has been put on the specific characteristics of this type of
software (specified in section 2.2). However, Latzina and Wedekind (1986) published
a checklist which can be used for this purpose.

The software evaluation methods of product review and of checklist procedure share
one feature: the actual evaluation takes place outside the environment in which the
software is used. When educational computer simulation programs are used in the
practice of everyday education, problems may arise which not foreseen by even the
most elaborated checklist procedure. Furthermore, Kanselaar et al. (1986) stated that
not all criteria of a checklist procedure can have an empirical basis, due to the lack
of data from empirical research on educational software. For this reason there may
be a difference in the opinion about the way an educational program functions based
on the results of an evaluation by means of a checklist procedure and the actual
functioning of the program in the practice of everyday education. Besides, the
functioning of the program may differ from one population of students to another
and from one didactic environment to another. This is why Criswell et al. (1984) state
that compared with the techniques of product review and checklist procedure the
technique of user observation gives a far more valid evaluation. However, compared
with a product review or with a checklist procedure a field test usually requires a
larger investment both in time and money.

Because of its relatively great liability, the method of field-testing was used for the
evaluations described in the chapters 4,5 and 6 of this study. For each field-test a
selection of the available techniques for gathering information was applied. The
techniques available were: student observation, automatic logging of student-program
interaction, pre- post- and retention testing, analyzing evaluation forms filled in by
the students and interviews with teachers and professors. The selection of the applied
techniques was based on pragmatic considerations (e.g. the characteristics of the
population of students and the content matter, the available hardware and software
and the available time). The criteria used for field-testing the software are based on
two main sources:

specifications for the design of the user interface of educational computer
simulation programs as described in section 2.2.
general concepts for courseware evaluation which could be applied to
simulation programs (for this reason criteria for courseware evaluation were
studied given by several authors like Nelissen and Eisendrath (1987) and
Kanselaar et al.(1986)).

41

The following five criteria are used for field-tests described in this thesis:

1 Control of the program
The students should be able to control the program without any assistance
from their instructor. Furthermore, if they are instructed to follow a learning
route, this route should be taken. This means that they must be able to:

start, stop and interrupt the simulation process at the moments
indicated in the guiding materials
select the correct cases
intervene at the correct moments. Besides, the correct entities
should be changed and the correct values assigned to these
entities.

2 Screen design
The information presented by the program (consisting of a visualization of
the state of the simulated system, output of the results of the simulation, the
control structure and messages) must be clear to the students. There should
be no need for the instructor to explain the meaning of the information.

3 Guiding materials
The guiding materials (paper materials or CAL materials) must be clear to
the students. There should be no need for the instructor to explain the
meaning of these materials. When CAL materials are used, the structure of
the CAL materials must be clear to the students. If a learning route through
the CAL materials is recommended, this route must be taken.

4 Duration
The students must be able to study the materials within the available time.
Furthermore, it is important for the development of future simulations to
measure how much time the students require for the study of the relevant
parts (e.g. preparation, tests, exercises, cases) of the materials. The duration
of the future simulations can be estimated more accurately, when data of
such measurements are available.

5 Effect
The didactic goals of the program should be reached. The students should be
able to do the exercises and cases introduced in the guiding materials.
Furthermore, the student's motivation should increase.

42

CHAPTER 3. DESCRIPTION OF PROTOTYPES OF
EDUCATIONAL COMPUTER SIMULATION
PROGRAMS AND EVALUATION OF THE DESIGN
METHOD

3.1. INTRODUCTION

The method for the design of educational computer simulation programs applied in
this dissertation has been described in the previous chapter. Three design systems
have been introduced enabling the design of educational computer simulation
programs in conformity with this method. In this chapter the design method is tested
as regards four criteria:

1. domain independence
Mathematical models implemented in educational computer simulation programs may
originate from quite different subjects like biology, chemistry, economics, informatics,
medicine, physics or technology. However, most educational computer simulation
programs have similar characteristics regarding the design specifications mentioned in
section 2.2. For this reason a design method for educational computer simulation
programs must allow for the design of educational computer simulation programs for
all the subjects mentioned above.

2. student population independence
Educational computer simulation programs are used for different fields of education
like secondary education (on all levels), vocational training and at university courses.
Each of these populations of students puts different demands on the design of an
educational computer simulation program. In chapter 6. details about these
differences are worked out. A design method for educational computer simulation
programs must meet all these requirements in order to enable the design of programs
for all the types of education described above.

3. performance
A method for the design of educational computer simulation programs must allow
fast prototyping. This technique allows repetitive software evaluations and revisions
thus improving the quality of the final software product. Furthermore, the costs of the
total process of courseware development are reduced if the software can be
developed within a short time.

43

4. effectiveness
Effective software should be developed. This means that students working with the
programs should have little trouble with the technical aspects of the learning
environment like the control of the program, the guiding instructional materials
and/or the design of the screens presented by the program. Furthermore, the
learning process must take place in a convenient way.
This means that the lessons must be completed within a short time, an adequate
route through the software is chosen and a convenient learning strategy is used.
Finally, there should be a learning effect.

Four hypotheses with respect to the criteria mentioned above have been formulated
in order to execute the proposed testing of the design method:

1. The design method allows the design of educational computer simulation programs for
the subjects of biology, chemistry, economics, informatics, medicine, physics and
technology.

2. The design method allows the design of educational computer simulation programs to
be used in secondary education, vocational training and in university courses.

3. The design method allows fast prototyping. For this reason it must be possible to
develop a new prototype within 2 months. A revision must be possible within 1 week.

4. The design method allows the development of effective educational computer
simulation programs.

A selection of thirteen prototypes (23 versions) developed according to the design
method presented in the previous chapter, is shown in Table 3.1. In many cases the
prototype has been worked out in various ways (versions), using a different design
system for each version. The prototypes are described in detail in the following parts
of this chapter.

First a description is given of the simulated system and the mathematical model
made from it. After this, the educational value of the simulation program is indicated
and the implementation process is described in outline. Each version of the prototype
is described separately. The information about these prototypes is sufficient to test
the first three hypotheses. Furthermore, several of the available versions are
evaluated in order to test the fourth hypothesis. Criteria and methods for these
evaluations and descriptions are discussed in the last part of the previous chapter.
The results of the tests of the hypotheses are discussed in the last part of this
chapter.

44

3.2. PROTOTYPES DESIGNED FOR THE SUBJECT OF BIOLOGY

Compared with other subjects in secondary education the subject of biology deals
with topics from a very vast range of disciplines. Life can be studied at a great
number of hierarchical levels like molecules, organels, cells, organs, organisms,
populations, ecosystems and landscapes. Most of the disciplines correspond with one
of those levels although some deal with topics from several levels (e.g. genetics) and
some deal with only one aspect of one level (e.g. taxonomy). During secondary
education many topics are dealt with in biology teaching in a purely qualitative and
descriptive way, although the role of experiments and quantitative descriptions in
biology teaching is increasing.

However, many important topics from biology (such as molecular reactions, many
physiological experiments, population growth, food chains and evolution) are difficult

45

